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Introduction 

Calculations of Real-Gas Effects in 
Flow Through Critical-Flow Nozzles 
Computer calculations hare been made of how real-gas effects modify the con&ntwnal 
one-dimenswnal equations for mass jhu of air, nitrogen, oxygen, hydrogen, argon, 
helium, and steam through a nozzle. The results indicate that for critical@ of air, at 

Similar magnitudes are found for the other gases. 
room hperatz ire  and lo0 atmospheres pressure, 

equation of state and the 

ONE of the difficulties in the conventional use of 
critical-flow nozzles for metering the mass-flow of gases ia the lack 
of accurate onedimensional flow relations that take into account 
such “real-gss” effects as compressibility and specific-heat varia- 
tions. Moat published critical-flow equations apply to  a perfect 
gas. For this report, a perfect gas will be defined aa one whose 
specific heat is constant and independent of temperature and 
pressure, spd whose compressibility factor 2 is constant. At  
high pressures or low temperatures (for example, values of pressure 
and temperature hear the critical point) significant errors in mas+ 
flow-rate calculation can occur if the ideal-gas flow relations are 
used. Ideal-gas flow relations are defined aa those that apply to a 
perfect gss. 

References [ 1 to  31 estimate the values of gaseous imperfections 
for isentropic flow by use of the van der Waals and the Beattie- 
Bridgeman state equations. Reference [4] is an experimental 
check on the resulta of referencea [2 and 31. An “effective 
gamma” for the isentropic expansion of real gase  is estimated in 
reference 5 1  Referenre [t;! p r w n t s  ZI graphical methnd for 
computing the msss-flow rate for real gases by means of the data 
from reference [7]. 

In  this paper, the mass-flow rates at the critical pressure ratio 
of air, nitrogen, and oxygen are calculated with the compressibil- 
ity and ideal-gaa specific-heat data from reference [7]. Theae 
mass-flow rates are also calculated for normal hydrogen by means 
of the data from reference [SI and for steam by means of the state 
equation in reference 191. References [S and 91 are the EOUTW 

for the mmpresaihility data for normal hydrogen and steam in 
reference [7]. I n  addition, less exact calculations are performed 
for all the above gases except steam with the Beattie-Bridgeman 

1 Numbers in brackets designate References at end of paper. 
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The Beattie-Bridgeman co&ts are from reference [lo]. This 
permits a check on the accuracy achievable by using the Beattie- 
Bridgeman equation. In  addition, the masa-flow rates of argon 
and of helium are computed with the Beattie-Bridgeman equation. 

For all gases except steam, the calculations are for tempera- 
tures up to 700 deg R and for pressures up to 100 atm. For 
steam, the ranges are 1500 deg R and 300 atm. 

Calculation Procedure 
Equations for calculating the ma4s-flow rate will be derived for 

two situations. One set will be derived for the situation where the 
compressibility fsctor Z is given as a function of pre~3~ure and 
temperature. The other set wil l  be derived for the situation where 
Z is given as a function of density and temperature. The only 
other variable needed for thew calculations is the ideal-gas Bpeeific 
heat cpo, which is a function of temperature only. Both of t h ~ ,  
methods are required due t o  the manner in which the data of 
reference [7] are presented for different gases. The two caeea will 
now be discussed. 

* 
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C a ~ e  I: Z = Z(p, T ) .  

This case appliea to nitrogen and t o  oxygen. In reference 171, 
the compressibility factor is expressed ad 

where B ,  C ,  and D ,  are tabulated as functions of temperature. 
For the purposes of these calculations, analytic expressions had 
t o  be found to represent B ,  C,, and D ,  Thia WBB done by fitting 
temperature polynomials to  the tabulated data. To cover the 
required temperature range, different equatione were needed over 
different segments of the range. At places where two segmenta 
met, it was required that the function and its fbt and second 
derivatives be continuous. A temperature polynomial WBB also 
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usedbo represent the normalized ideal-gas specific heat cpolR, as 
equation, equation (1 ) .  The quantity (”) is evaluated from 

equation (6). The resultant expression for - a2 is 

tabulated in reference [7]. bP 5 
The given values for the calculation are the inlet stagnation 1 

pressure PO, the inlet stagnation temperature To, and the Mach 

number a t  the nozzle throat MI. By assuming the gas to  be per- 
fect, an initial estimate of the nozzle-throat temperature TI can 
be made. The actual Mach number for this estimate is com- 
puted as follows. 

The differential entropy and enthalpy (reference [ l l ]  ) are 

dT 1 
dS =e,-  + - 

T P2 

( 3 )  
1 
P 

dH = T dS + -dp  = -VdV 

If the density p is eliminated from these equations by means of 
equation (l), the result is 

(5) 

Equations (4) and (5) were integrated along the path shown in the 
* following sketch: 

.Po, To, so 
I 

0 T 

Equations (4) and ( 5 )  in integral form become 

where cpo is the value of the constant-pressure specific heat at zero 
pressure (also the ideal-gas specific heat), and 

With the aid of a high-speed digital computer, equations (6) 
and (7) were solved for PI and VI. The computational accuracy 
of p l  is one part in 108  (this does not include errors in input data). 
To compute the Mach number, it  is necessary to find an expres- 
sion for the speed of sound a. The expression that applies here is 

The quantities (”) and (z)  can be evaluated from the state 
b p  T P 

The actual Mach number is then given by 

VI 
MI = -& 

The temperature correction, AT, to be added to the nozzle- 
throat temperature can be estimated by 

dT 
dM 

AT = - - AM (11)  

where dT/dM is estimated by the perfect gas relations, and AM 
is the difference between the actual and desired Mach number. 
By using the new nozzle-throat temperature, a new Mach number 
is calculated. This process is repeated until the difference be- 
tween the actual and desired Mach number is less than 
The mass-flow rate per unit area is then given by 

and the ideal-gas mass-flow rate is 

Equation (13)  is somewhat arbitrary. The presence of 2 0  in- 
sures that at a pressure ratio approaching unity, where the flow 
becomes incompressible, the mass-flow-rate defect (the dif- 
ference between equations (12)  and (13) ) ,  becomes zero. For 
both nitrogen and oxygen, yi  was chosen to be i / 5 .  It is im- 
portant to  note that the choice of y, is arbitrary. Another choice 
would give different but equally valid results. The choice of 7/5 
was based on the ideal model of a diatomic gas molecule with 5 
degree of freedom. 

The mass-flow rate for the critical-flow condition is that case in 
which the nozzle-throat Mach number is unity. The pressure 
ratio for the condition is the critical pressure ratio. The value for 
the ideal mass-flow rate for the critical-flow condition is 

Case 11: 2 = Z(p, T )  

This case applies to  the remaining gases and to  the Beattie- 
Bridgeman calculations. In  all cases, the specific-heat data from 
reference [7] were used. The state equation for air and hydrogen 
is 

z = Z(P, T )  = 1 + Bpp + Cpp2 + D~P’  (15)  

For air, the virial coefficients B,, C,, and D, are tabulated as 
functions of temperature in reference [7]. Analytic expressions 
for the virial coefficients were found in the same manner as those 
in Case I. For hydrogen, the compressibility factor Z is tabu- 
lated in reference [8] aa a function of temperature and density. 
For a constant temperature, cubic equations in density were fitted 
to  the compressibility data, which recovered the virial coef- 
ficients B,, C,, and D,. Thcn, in a manner similar to  that used 
for air, analytic expressions for the temperature variations of the 
virial coefficients were found. 



The form of the Beattie-Bridgeman state equation used is 

CbB + - b B + - - -  P* 4- -@- P s  (16) ( RT Ta 

The constants for the Beattie-Bridgeman state equation are from 
reference [ 10). 

For steam, the state equation is that given in reference [9]. 
This equation readily reduces to  the form Z = Z(p, T ) .  

The given quantities for these calculations are the inlet stagna- 
tion pressure pol the inlet stagnation temperature To, and the 
nozzle-throat Mach number MI. From the plenum conditions, 
the inlet stagnation density po is calculated through the state 
equation. By assuming the gas to  be perfect, an initial estimate 
of the nozzle-throat temperature T I  can be made. The Mach 
number for this estimate is computed in the following manner. 

r 

L 

constant R.) Equations (21) and (22) were solved for p1 and for 
the internal-energy change of the gas. The computational ac- 
curacy of pl  was one part in 106. The velocity of the gas in the 
nozzle throat VI is given by 

uo - u1 
VI = { 2R [ ___ + ZOTO - ZLL"I])"' (23) 

To compute the Mach number, i t  is necessary t o  derive an ex- 
pression for the speed of sound a. The expression that applies 
for this case is 

The quantities (") and (g) can be evaluated from the 
bp  T D . . .  

state equation, Z = Z(p, T ) .  The quantity ( z)s is evaluated 

from equation (21 ) .  The resulting expression for a* is 

The differential entropy and internal energy (reference [ 1 1 1 )  
are : 

(g) dP 
dT 1 

& = c - - -  
' T  p 2  

P 
dU = T d S +  - d p  (18) P' 

If the pressure is eliminated through the state equation, the re- 
suit is 

Equations (19) and (20) were integrated along the path indicated 
in the following sketch: 

P I  

0 T 
The equations in integral form become 

9 SI - So - -=O R 
= In-  - J: [ z - l + T ( g ) ~ T = T o  p 

dP 

(21) 

____-  UI - uo - - ~ ~ [ P ( ~ ) ]  
dp + JT'($ - 1)dT R P T=TQ P 

- ip' [ T z ( g ) ]  P T=TI P (22) 

(The ideal-gas specific heat at constant volume equals the ideal- 
gas specific heat a t  constant pressure reduced by the specific gas 

The actual Mach number is given in equation (10). An itera- 
tion procedure simii t o  that used in Case I is used until the 
difference between the actual and desired Mach number is lesa 
than 

The mass-flow rate is given by . . 

The nozzle throat pressure p l  is calculated through the state 
equation. The ideal-gas mass-flow rate is sti given by equation 
(i3j. Tine caicuiations ior the criticai-flow conciitions are the 
same as those given in Case I. For the ideal-gas computations, 
the value of yi was chosen to  be 7/5 for air and hydrogen, 5/3 for 
helium and argon, and 4/3 for steam. AE in Case I, the values of 
yi are arbitrary. Another value would give different but equally 
valid resulta. The choices of 5/3,7/5, and 4/3 are based on the 
ideal model of a monatomic, diatomic, and nonlinear triatomic 
gas molecule with 3,5, and 6 degree of freedom, reapectively. 

Results and Discussion 
Figs. 1 to 7 show the maseflow-rate defect as a function of the 

pressure head divided by the stagnation pressure (po  - p l ) / p ~ .  
The temperature for Figs. 1 to  6 is 550 deg R. The temperature 
for steam, Fig. 7, is 1500 deg R. The difference between the de- 
fects calculated from the virial equation and the Beattie-Bridge- 
man state equation is indicated where applicable. For the casea 
of helium and argon, only the Beattie-Bridgeman computationa 
were made. For the case of steam, only the state equation of 
reference [9] was used. 

It was found that when the difference between defects of the 
two computations was less than 0.001 the compressibility factor 
Z yielded by the virial equation was within 0.001 of the com- 
pressibility factor yielded by the Beattie-Bridgeman equation. 
Since the Beattie-Bridgeman calculation is more convenient, a 
possible criterion of when it may be used might be that the com- 
pressibility factor Z yielded by the virial equation be the same as 
that yielded by the Beattie-Bridgeman computations t o  the de- 
sired percentage accuracy. This presuppoiwb that, in the ideal-gas 
calculation, the more accurate value of 2" is used. 

Lines of constant Mach number are also shown in Figs. 1 to  7. 
With the exception of steam, Fig. 7, the defect is on the order of 
0.002 at a Mach number of 0.2; the defect rises to  avalue between 
0.01 and 0.04 for Mach I at a pressure of 100 atmospherea and 
temperature of 550 deg R. For steam, Fig. 7, the defect is about 
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Fig. 4 
drogen at TO = 550 deg R and Ti = 715 

Variation of mass-flow defect with pressure ratio for normal hy- 
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Fig. 5 
TO = 550 dog R and yi = 513 

Variation of mass-flow defect with pressure rotio for helium d 
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Fig. 6 
TO = 550 deg R and yi = 513 

Variation of mass-flow defect with pressure ratio for argon at 
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Fig. 7 
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Variation of mass-flow defect with pressure ratio for steam at 
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Variation of mars-(low defect with pressure for critical #low of cib 

_. 

PRESSURE, p0, ATM 

Ra. 9 Vmiations af mas.-lhw d . h a  with pressure for critical (low of 

-0.001 for a Mach number of 0.2 and about -0.015 for a Mach 
number of unity. 

Figs. 8 t o  14 show the maas-flow-rate defect for critical flow in 
nozzles as a function of inlet stagnation pressure p. The pa- 
rameter for these graphs is the inlet stagnation temperature TO. 
For this case, the ideal mass-flow rate is calculated on the bask of 
the ideal critical-pressure ratio. It is obeerved that a defect of 
about 1/4 percent for air occurs a t  a pressure of 10 atm. This de- 
fect is of the name order as the accuracy of the discharge co- 
efficient. Thus, even a t  10 atm, the real-gas effects can be im- 
portant. 

The maximum defects range from about 0.02 for helium to 
about 0.06 for nitrogen. These defects occur a t  the high-pressure, 
low-temperature points. 

For the cams of hydrogen and steam, Figs. 11 and 14, respec- 
tively, significant defects exist even at very low pressurea. 
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Fig. 10 Variation of mas.-llow defect with pressuro far critical (low 
oxygen and y, = 7/5 

of 

PRESSURE, po. ATM 

Fig. 11 
-1 hydrogen and yi = 7/5 

Varidon of mass4ow defect with pressuro far critical Raw of 
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Fig. 12 
helium and y i  = 5/3 

Variation of mas.-llow defect with pressure for d c a l  Raw of 

These defects are not c a d  by variation in Z but are caused by 
the variation of the ideal-gas specific heats. At low pressures, the 
corrections would have been of a smaller magnitude if the actual 
value of yi at stagnation conditions had been used rather than 
the values yi = 7/5 for hydrogen and yi = 4/3 for steam. For 
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R. M. Reimer3 
This paper is very welcome to the field of high pressure ratio gas 

flow measurement. Professor Amberg’s suggestion to include the 
compressibility factor Z-curves makes the paper a useful working 
tool because one can calculate the value of the “ideal” flow rate 
used in Figs. 1 to 14 in preparation for calculation of the actual 
flow rate without requiring other references. I prefer the use of 
the “perfect low pressure gas” flow rate for these figures to 
eliminate this intermediate step. Although the author points 
out the arbitrary definition of ideal gas flow in equation (13), and 
explains the presence of Zo (which may not be unity), it  is in- 
consistent with his opening statement “a perfect gas will be de- 
b e d  aa one whoee specific heat is constant and independent of 
temperature and pressure and whose compressibility factor Z is 
unity. . . Ideal gas flow relations are defined as those that apply 
to a perfect gas.” I mention this mainly to caution those 
readers who will not pay much attention to  the calculation pro- 
cedure. 

Comparison of Fig. 8 with Fig. 4 in reference [6] shows that the 
inclusion of ZO, in the ideal-gas critical flow-rate equation (13), 
accounts for about half the mass-flow defect between the con- 
stant gamma perfect gas with -mity iampressibility fachr and 
the real gas. Hence if someene blindly uses Figs. 1 to 14 without 
careful attention to equation (13), a significant error results. 

Equation (9) can be written in other forms which I present for 
informative purposes. Rewriting equation (9) as 

Y =  

where p is the Joule Thomson coefficient 

the denominator is recognized as the reciprocal of the isentropic 
exponent k from the definition of the speed of sound. Using an 
equation from reference 15) 

where y is the ratio of specific heats and k is the isentropic ex- 
ponent, and the easily derived equation 

we can write the denominator of equation (28) aa 

(32) 
1 

I - -  P (”) - ZR 21.c~ cp (y)’ k =  

Z bp T cP T ZR 

Hence the last three denominator terms of equation (32) should 
be equal to  the last term of equation (9). ZR - is the most sig- 

cs 
nificant term. 

tabulated in puDEcstiez along with other gas properties. 
Because of the significance of ( d Z / d p ) ~  and k, they should be 

Aut hor’s Closure 
Mr. Reimer is quite correct when he warns the reader about 

3 Consulting Engineer-Testing Development Test SubOpera- 
tion. Advanced Engine C Technology Department, General Electric 
Company, Cincinnati, Ohio. Mem. ASME. 

ZRT 

the use of Figs. 1 through 14 without paying careful attention to 
equation (13). Again, I wish to iterate, the calculatiom of the 
mass-flow rate by means of equations (13) or (14) not only re- 
quire knowledge of the maasflow defect as given in Figs. 1 
through 14, but also knowledge of the plenum compreesibility 
factor a~ given in Figs. 15 through 21. 

The 
computational uncertainty in calculating the maas-flow 
rate by the methods in this paper is about 0.1 percent which is on 
the order of the uncertainty of the physical factors involved in 
this analysis. 

I feel that a comment concerning accuracy is in order. 

Reprinted from Septmber I 964. 
Journal of Basic Engineering 
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Fig. 19 Compressibility factor for helium 
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Fig. 20 Compressibility factor for argon 

the catx of steam, the endpoint of the curve is indicated by a 
small circle in those cases where a higher pressure would initiate 
liquefaction at  the nozzle throat. 

By using Figs. 8 to  14, an estimate can be made of the mass- 
flow-rate defect for pressure ratios other than critical. This 
estimate, whose accuracy is on the order of l/, percent, is 

(Po  - PI) mass-flow defect = 2.0 ~ 

Po 
X (mm-flow defect for critical pressure ratio) (27) 

Values of compressibility factor 2 as functions of pressure and 
temperature for the various gases are plotted in Figs. 15 through 
21.0 These values are given as an aid in computing the ideal-gas 
mass-flow rate represented by equations (13) and (14). 

* These graphs are included at the suggestion of B. T. Arnberg. 
Valuea of 2 for all gases but helium are from reference [7]; values for 
helium are computed from the Beattie-Bridgeman constants given in 
reference [lo]. 

PRESSURE, p, ATM 
Fig. 21 Compressibility factor for steam 

Summary 
Computer calculations of real-gas effects in critical-flow nozzles 

have been made for air, nitrogen, oxygen, hydrogen, argon 
helium, and steam. The results indicate that for critical flow of 
air, at room temperature and 100 atm pressure, real-gas effects of 
3l/1 percent exist. Similar magnitudes are found for the other 
gases. 

It waa also found that the agreement between the mass-flow 
rate defect calculated by the use of the Beattie-Bridgeman state 
equation and that calculated by use of a more exact equation was 
on the same order a8 the agreement between the compreasibility 
factor calculated by use of the Beattie-Bridgeman state equation 
and that calculated by use of the more exact state equation. 
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